Multiple Choice

Read each question. Then write the letter of the correct answer on your paper.

1. Which condition(s) will allow you to prove that $\ell \parallel m$?

- I. $\angle 1 \cong 4$
- **II.** $\angle 2 \cong \angle 5$
- **III.** $\angle 3 \cong \angle 4$
- **IV.** $m \angle 2 + m \angle 4 = 180$
- A. III only C. II and III only
- **B.** I and IV only **D.** I, II, III, and IV
- **2.** Which property says that if a = b and b = c, then a = c?
 - **F.** Reflexive Property of Equality
 - G. Symmetric Property of Equality
 - H. Transitive Property of Equality
 - J. none of these
- **3.** Which of the following angle relationships can you use to prove that two lines are parallel?
 - **A.** congruent alternate interior angles
 - B. supplementary corresponding angles
 - C. congruent vertical angles
 - **D.** congruent same-side interior angles
- **4.** How many planes are there through any three noncollinear points?
 - **F.** zero **H.** at least one
 - G. exactly one J. infinitely many

5. $\angle A$ and $\angle B$ are supplementary vertical angles. What is $m \angle B$?

A. 45	C. 135
B. 90	D . 180

6. Which types of angles can an obtuse triangle have?

I. a right angle	II. two acute angles
III. an obtuse angle	IV. two vertical angles
F. I and II	H. III and IV
G. I and IV	J. II and III

7. Given the diagram below, which expression could be used to find the sum of the angle measures in the triangle?

A. $f + g + c$	C. $a + b + e$
B. $a + b + c$	D. $d + e + g$

8. What is the value of *x* in the figure?

9. What is the measure of any exterior angle of an equiangular triangle?

A. 30	C. 90
B. 60	D. 120

10. The measure of an angle is 6 less than twice its complement. What is the measure of the angle?

F. 32	H. 116
G. 58	J. 174

Gridded Response

11. What is the measure of $\angle 1$?

- **12.** Two angles of an isosceles triangle have measures 54.5 and 71. What is the measure of the third angle?
- **13.** Find the value of *x* for which $\ell \parallel m$.

- **14.** $\angle ABC$ and $\angle CBD$ form a linear pair. If $m \angle ABC = 3x + 20$ and $m \angle CBD = x + 32$, find the value of *x*.
- **15.** \overline{AB} has endpoints at -3 and 9. What is the coordinate of its midpoint?

Constructed Response

- **16.** Is your friend's argument for the following situation valid? Explain.
 - **Given:** If you buy a one-year membership at the gym, then you get one month free. You got a free month at the gym.
 - Your friend's conclusion: You bought a one-year membership.
- **17.** Draw \overline{MN} . Then construct the perpendicular bisector of \overline{MN} .
- **18.** The measures of the angles of a triangle are 2x, x + 24, and x 4. Find the value of x. Then find the measures of the angles.

19. Find each missing angle measure.

- **20.** Suppose a line intersecting two planes *A* and *B* forms a right angle at exactly one point in each plane. What must be true about planes *A* and *B*? Explain your answer.
- **21.** Write the converse, inverse, and contrapositive for the statement below. Then determine the truth value of each.

If a figure is a square, then it has at least two right angles.

22. Examples and nonexamples of *bleebles* are shown.

a. Is the figure at the right a *bleeble*? Explain your reasoning.

- **b.** What is a definition for *bleeble*?
- **23.** Write a paragraph proof.

Given: $\ell \parallel m, \angle 2 \cong \angle 4$ Prove: $n \parallel p$

